Is maternal duplication of 11p15 associated with Silver-Russell syndrome?

نویسندگان

  • T Eggermann
  • E Meyer
  • C Obermann
  • I Heil
  • H Schüler
  • M B Ranke
  • K Eggermann
  • H A Wollmann
چکیده

BACKGROUND Silver-Russell syndrome (SRS) is a heterogeneous malformation syndrome characterised by intrauterine and postnatal growth retardation (IUGR, PGR) and dysmorphisms. The basic causes are unknown, however in approximately 10% of patients a maternal uniparental disomy (UPD) of chromosome 7 or chromosomal aberrations can be detected. Four growth retarded children, two with SRS-like features, associated with maternal duplications of 11p15 have been described. Considering the involvement of this genomic region in Beckwith-Wiedemann overgrowth syndrome (BWS), we postulated that some cases of SRS--with an opposite phenotype to BWS--might also be caused by genomic disturbances in 11p15. METHODS A total of 46 SRS patients were screened for genomic rearrangements in 11p15 by STR typing and FISH analysis. RESULTS Two SRS patients with duplications of maternal 11p material in our study population (n = 46) were detected. In patient SR46, the duplicated region covered at least 9 Mb; FISH analysis revealed a translocation of 11p15 onto 10q. In patient SR90, additional 11p15 material (approximately 5 Mb) was translocated to the short arm of chromosome 15. CONCLUSIONS We suggest that diagnostic testing for duplication in 11p15 should be offered to patients with severe IUGR and PGR with clinical signs reminiscent of SRS. SRS is a genetically heterogeneous condition and patients with a maternal duplication of 11p15.5 may form an important subgroup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain.

INTRODUCTION Silver-Russell syndrome (SRS; also know as Russell-Silver syndrome) is a heterogeneous syndrome which is characterised by severe intrauterine and postnatal growth retardation and typical dysmorphic features. Recently, the first SRS patients with (epi)genetic mutations in 11p15 affecting the telomeric imprinting domain have been identified. Interestingly, opposite mutations are asso...

متن کامل

First Genetic Screening for Maternal Uniparental Disomy of Chromosome 7 in Turkish Silver-Russell Syndrome Patients

OBJECTIVE Silver-Russell syndrome (SRS) is a clinically and genetically heterogeneous syndrome which is characterized by severe intrauterine and postnatal growth retardation, and typical characteristic facial dysmorphisms. It has been associated with maternal uniparental disomy (UPD) for chromosome 7 and hypomethylation of imprinting control region 1 (IGF2/H19) in 11p15. UPD refers to the situa...

متن کامل

Silver-Russell syndrome: genetic basis and molecular genetic testing

Imprinted genes with a parent-of-origin specific expression are involved in various aspects of growth that are rooted in the prenatal period. Therefore it is predictable that many of the so far known congenital imprinting disorders (IDs) are clinically characterised by growth disturbances. A noteable imprinting disorder is Silver-Russell syndrome (SRS), a congenital disease characterised by int...

متن کامل

Possible association between complex congenital heart defects and 11p15 hypomethylation in three patients with severe Silver-Russell syndrome.

Silver-Russell syndrome (SRS) is characterized by pre- and post-natal growth restriction that spares head growth, feeding difficulties, and variable dysmorphic facial features without major malformations. Hypomethylation of the paternal 11p15 imprinting control region 1 (ICR1) and maternal uniparental disomy of chromosome 7 are found in 50-60% and in 5-10% of SRS patients, respectively. We repo...

متن کامل

Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci.

Genomic imprinting plays an important role in mammalian development. Loss of imprinting (LOI) through loss (LOM) or gain (GOM) of methylation is involved in many human disorders and cancers. The imprinted 11p15 region is crucial for the control of foetal growth and LOI at this locus is implicated in two clinically opposite disorders: Beckwith Wiedemann syndrome (BWS) with foetal overgrowth asso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medical genetics

دوره 42 5  شماره 

صفحات  -

تاریخ انتشار 2005